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ABSTRACT

The stability of a cylindrical cold plasma consisting of
electrons only is investigated analytically. The geometry is
similar to that of the proposed heavy ion plasma accelerator. The
dispersion equation is derived and discussed for the case that the
plasma rotates like a rigid body. The resulting instabilities are
found to be much more violent than Those studied by Buneman et al.

for a straight geometry. The underlying physics is discussed.



I. INTRODUCTION

The properties of grossly non-neutral plasmas have received
considerable attention recently because of several possible appli-
cations.1s253 (One of these,® the heavy ion plasma accelerator
(HIPAC), makes use of an electron cloud which is suspended by a strong
magnetic field in a metal cylinder of toroidal geometry. The
ultimate failure or success of such a device will critically depend
on a favorable stability behavior of the electron plasma in such a
geometry.

The macroscopic stability for a cold electron plasma in a
ca?thesian slab geometry has been investigated by Buneman, Levy,
and Linson.? Their results were very encouraging: A long wave length
diocotron instability can be avoided by a suitable geometry which
does not allow such waves and the cyclotron instability becomes
unimportant because the growth rate is proportional to exp(- 2/q)
which becomes insignificant if g = 0(10-2). q is defined as
q = mpg/wc2 (@Pe = hnezn/m; W, = eB/mc).

Although these results apply strictly only to a carthesian
plasma slab (Fig. 1(a)), it has been assumed to hold--at least
order of magnitude-wise--also for the HIPAC geometry (Fig. 1(b)).

There are, however, important differences:



The slab geometry has two plasma boundaries, the zylindrical geometry
only one. The second boundary condition is that for r = O the dis-
turbed potential has to be finite. Aé a consequence, the diocotron
instability disappears for a purely azimuthal disturbance if inertia
effects are neglected. This has been studied by Timofeev®:® and
Tevy.”

Another important difference is that in Fig. 1(a) there will
always be a "slipping" in the beam, i.e., the E x B drift will always
depend on x. 1In Fig. 1(b), however, the plasma may rotate like a
solid body with no internal "slipping". These differences may have
profound consequences on the oscillation modes and in particular on
the growth rates of the instabilities. It is for this reason that
~ this investigation has been undertaken.

The remainder of this paper will proceed as follows: In
Section IT we state the basic equations and the equilibrium solutions.
Section III deals with the derivation of the dispersion equation.

It turns out that it can be written as an algebraic equation
involving only Bessel functions. We then discuss the dispersion
equation and the resulting instabilities for ¢ << 1.

Finally, the differences of the results in the two geometries are

discussed.



ITI. EQUILIBRIUM

We approximate the toroidal geocmetry of HIPAC by a straight
cylinder and periodic boundary conditions at z = o and z = Z Typical
toroidal effecfs due to curved field lines and the inhomogeneity
of the magnétic field are thus excluded. However, it is generally
believed that this is a reasonably good approximation to zeroth
order (compare the literature on stellerator geometry, e.g., Ref.8).

Consider in this geometry a cold nonrelativistic electron
plasma, which is described by the continuity equation, the equation

of motion, and Poisson's equation:

%+ v(m) = o0; (2.1)
dv 1 .

ma:-e(-v@+gzx§)§ (2.2)
2

v % = bmen. (2.3)

The equilibrium solution is given by

n® = n°(r)

v = V<T)§qf where V = -¢ ==—3; E ° = -



and E_°(r) = - bre j‘ n°(r) rdr.
r r
0

If we assume a constant density for r < a, we find

2 2
V = %q w. ¥ =0r, o= %q We s where q = mp /wc .

It will turn out that this assumption will mske the dispersion

equation particularly simple.



ITI. DISPERSION EQUATTION

If we disturb the equilibrium, we may write the perturbed

quantities as:

@(r) 1wt + ive + ikz
u(r)

Linearizing in the usual way, the equation of motion can now be

written as:

ilw+ v V/r)ur + (wc - V/r)ucp =r% %ri ;

-1 AT = -8 iv, .
(wc ar)u'r 1(w+\;V/r)u(P- = =8

ilw+ v V/ru ikd

n
Bio

The determinant D of this system is given by:

= (w, - Plog - I - (w+ v v/r)?



We can easily solve for the velocities u, and‘um:

Du, =% [(w+vPe’ - (u, -7 Lal,
. i v '
=%[ch%ﬁ"W+VF)f“’ (3.1)

Dy

_If n°(r) is a constant, D and all coefficients in Eg. (3.1)

become constants and we obtain for the divergence of u:
e i + VO 1 ' v2 ' kzD
v" U= o~ 1‘&9_——2 {-— (r@')'- —_—0 + ...__._......._____Q}
= m D r
where D is now given by:
D= (u, - 0) - (0 +0),

From the continuity equation, we derive the perturbed

" density:



N s = et {_§_151_°u +n° v.u} (3.3)

Poisson's equation can now be integrated for the case of constant
density along r from r = a ~ ¢ to a +e , e << 1, and we obtain at

once the boundary condition:

aéout aQJ'.n Lmen®

or 2r  i(w + vo)

ur(r = a). (3.1)

? and éin refer to the potential outside or inside of the boundary.

out
The only term which survives the limiting process ¢ - O is the
term with n°, which degenerates into an §-function. -All other
terms remain finite.

For the domain inside the boundary, we combine Egs. (2.3),

(3.3), and (3.2) to obtain:

2
L Seoin, 25
r

with #° = k© Dp1 -——f)P—-—-g (D + %2).;< (3.6)
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The only admissable solution is:

3. = CI\) (nr). (3.7)

in

I\)(z) is the modified Bessel funetion of the first kind.
For the vacuum region a < r < R, we assume for simplicity that

R is infinite. Then the solution of Ve@'out = 0 is given by:

§out = hKv (kr),

where K\)(Z) is the modified Bessel function of second kind. The

continuity of the potential requires:

el (na) = hK, (ka) - (3.8)

If we now divide the boundary condition (3.4) by Eq. (3.8),

we obtain the desired dispersion relsgtion:

dllﬂ(v(ka) dfe,nIv(ua) W I
ke (k) T TAGe) T DY TP piwe ¥ (3.9)




The simplicity of Eq. (3.9) contrasts the complexity of
the dispersion equation found by Buneman et al.* This is due
to the absence of slipping, in our case.

" We try now to get some insight into the possible wave

modes and instabilities of the dispersion equation just deriwved.
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IV, INSTABILITIES

We shall make use of the asymptotic expressions for the
logarithmic derivatives of the Bessel functions.

For z — O, we have:

d - 1,....a=.8 _ 1 L2
It is useful to introduce the following quantities:
. |
+ VO A
yeg -5 =4 a= 5= 13- (%)
(w, - 0% (@-5q)

If w has an imaginary part, so has y.
For q << 1, the cyclotron frequency is characterized by
y ~ 1, the diocotron oscillation is mostly found at y = 0(q).

Note that g << 1 implies q &~ q.



13

With Eq. (4.3), we can write the dispersion Eq. (3.9) as:-

) 5 : o dgnT ("a) Lo . .
Y-y = —p— e d -y (k)
. 2Ly dmK (ku)
with  n2el = k252 Loy )G~ - d) v

A = = > 0 '
2 2 ’ d ?
(+d -y A CO
and T = q v/ak.

Let's first consider the case, k = 0. Eg. (4.4) yields

“with Eq. (4.1) the solutions:

o ml/2 N
¥y =13 Vo/3 = 1/2 £1/2 (1 + 29)7/° . (4.5)
Alternatively, the 3 solutions can be written aé:,
w / c1-Yv e e w/o =-1-3v, (4.6)
N /W 5 as @2 o “‘ , 5 Vi .

and ' w/w, = %(1 -y, (k=0,v10).



1k

q is completely arbitrary. Clearly, the first two solutions are
cyclotron oscillations, whereas the third is the diocotron branch.
The diocotron mode has been considered for a wider class of
’density distributions by Timofeev® who showed that for monotonically
decreasing distributions, this brénch is always stable.
We specialize now for small ¢, and allow (ak) to be

different from O, yet so small that
1> 4> (ak)z.

The result is that the solutions remain still stable. However, if
(ak) grows further, so that we have
2 A
1> (ak)" > q , (4.7)
a more interesting behavior develops.

If we insert two of the roots (4.5), namely,

: A A 2
Vo = -1 - %q and y3 = %q into nga 3
we find that
22
k
Y%Eag ] A >> 1. : (h.8)
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S : , ] _ _ g o
Thus, we have to use now the asymptotic form (k.2) for GaY ,cnIV(na).

With the assumption (4.8), our dispersion assumes the

form:
' ' 1/2
4y(y° - 1A+ 1 = [(y2 -G - DGT -1 - aﬂ (L.9)

We consider now the diocotron branch and look for a

solution |y |<<l. Eg.(4.9) can be written as:

1/2
E—(l )G -y - ¥+ aﬂ - (k.10)

b L

y=T/A, +Y &

hY

For  ka << 1, we have A = v/ka > 1 and /A = 4.

Eq. (4.10) is of the form y = f(y), and we may find a solution
by iteration, if |f£(y) [< 1 in the considered domain of y.

For example, we have ]f'(c’i) | = O(ql/z/Av)< 1.
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In this way, we find:

A, . kaal/e ,
y=a+15749) ' (4.11)

which is cleé,rly unstable.

If we now check our assumption | n2a2 \>> 1, it turns out
that it is rigorously satisfied only if (ka)e/v2<<a . Simulta.r'leousl;;;
Eq. (4.7) must hold and, therefore, the relation 1 <« (ka)e/q << V2,
This excludes v = 1 and 2 but we may expect that they, too, are
unstable.

The opposite case is ka >> 1, A, = 1. We find from Eq. (4.10):

/4= (1-5) (" + 2y -1 -8
The solutions y = - -]2-‘- é‘ :i:(l/2 + 1/k (Evé_)

2) 1/2

: ’ o ' _
violate our assumption (4.8) as (na)” becomes of order one and

are erroneous. This means that we cannot explore this part of
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the diocotron mode with our simple approach, but have to apply
more sophisticated means.

We turn our attention now to instabilities in the neighbor-
hood of the cyclotron frequency. It is convenient to introduce:

2 1
vo=1+ €, ¢ << 1 v = 6(1 + Ee), 8 = &13

and to write kEq. (4.9) as an equation for €, which we assume to

be small. After squaring both sides, we obtain:

(a7 - 1)e® + 2(sA M + 2a)e + 10 = 0. (4.12)

In deriving Eg. (4.12), we neglected terms of order ¢ and g

compared to 1. From the solution

i .
AT+ 5 L 1 b 2 1/2
1 221 [y + P+ 6A'ﬂq] , (4.13)

v %

we see that one solution with § = +1 is always stable. The other
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" ig stable if:

T
A <&

- R P S (kak)
. Tet's consider the case ka << 1.  Eq. (vh.l) for Avis now no " - |
longer sufficient to determine sfabili’cyv- because the 1ea,ding'.’ terms
‘Just cancel. We have to take into account more terms in the expension
of A\) for small argument (coinpare Ref. 9).' For v = 1, we have: |

’_A1»= L (a)? w2 .(ka‘)?(y ; -“2:>) ; e
_where y = 0.577 is EUl.éI"S cor;stah’c. This yields:

ka < 0.532, (v = 1) 1 | -_ L | (4.16)
- as condition for in§tability. Eq. (4.13) bewﬁes:

| | ks 1/2 | , B =

The upper bound for (ka) in (4.16) is already beyond the limit

of validity of our expansion for Al’ because the second and thii‘d
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. term in the bracket of (4.15) should be small compared to one.

For v = 2, we find:
| A2}=>.£-§-‘ (3 (a,k)? s () Ly (ak)*.}l | -
‘The condition for instability becomes now:
N (]::’at)?‘(ﬂn.%é + ¥> -'-Z-.' ' C ;; | o (%.18)
ThlS inequality is satisfied for a.ny k& Thqs, the v = 2‘mc'>de

is also unstable for all small ak. Eq. (4.13) becomes for this

. .

The opposite case, ka >> 1 can be treated for all modes simul-

teneously. Using (4.2), we obtain from (4.1h4):
ov - /BV <ka <2v +/BV. |  (4.20)

For e, we obtain:

e = --32-‘-q (ka i‘/-(ke. - 2\))2 + 2y), _ ' (ho21)
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If xaq << 1, but ka >> 1, all our assumptions are satisfied,
including (4.8). This instability seems to be particularly
dangerous because, béing a} short wé,ve length instability, it
cannot be stabilized by choosing a partieﬁla.r geometry. Because
of the short wave length, finite Larmor radius effects may become
important, but if cannot be said, at the present sfage of the
investigation, if these effects have a stabiiizing or de-stabilizing
tendency.

| To conclude this paragraph, we list thé .most important
formulae derived, in terms of frequencies, ﬁog'ethei- with'their
assumptions. |

Dioeotron Modé:

q << (ka)g << 1 : w/wc = q(1 - —\23) + i -1% q 1/2.- (v>> 1) (4.11a)

ka >> 1 : Assumption (4.8) violated, no results.

‘ Cyclotron Mode:

g << (ka)® << 1

el ofay = - iaat (@? B (re D (h17e)



Instability for ka < 0.53%.

ve2 oa = 1+Reial P A2 )P mBr ] (k%)
Instability for any smell (ka).

ka >> 1:

‘ w/wc = [1 +% (v -1 - %fka.) + iﬁq é\)‘ - (ka - 2\)')2]5 - (4.21a)

Instability for & - /& <ka < 2v + /&,
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V. - DISCUSSION

The results Jjust qpbted are quite discomforting in viéw
of the proposed Héavy Ion Plasma Accelerator. In their basic
paper, James, Levy, Bethe, and Feld quote the results of a
corresponding calculation in straight geometry. One hight
conclude that similar results hold order ofamégnétude—wise
also for the HIPAC geometry. The above caléulation has shown
that there is a substantial difference., This is readily seen
if we compare‘the various growth rates.

For the diocotron instability, Buneman et al.* find

in the long wavelength limit:

2 ,

c

(Their equation 5.5)

From our Eq. (4.1la), we obtain:

It has to be képt in mind that in these two formulae the same

symbols mean different things. In the straight geometry, k is



23

thekwavelength along the y-axis; in cylindrical geometry, it
| is along the z-axis. a is the half-width of the plasma slsab
in straight geometry; here, it is the plasma radius. Actually,
k in slab geometry resembles more our v, but we have seen in
our analysis that disturbances with y = O are all stable.

| The cyclotron instability in slab geometry has a growth

rate:

2
i - 1
Im w= e mcqe q kg > EE .

(Eq. (9.10) in Ref. L4)

The corresponding equation would be (h.2la) with

Tm = i- 0 g Jov - (ka - 2v)2 .

Whereas . the first growth rate becomes insignificantly small, as

g - 0, the second remains appreciable, For example, for

3

n ~10%mn™>, q = 10"2, the e-folding times are of the order of
e

microseconds or shorter.
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What is the physiecal reason for this striking»difference?
‘The cyclotron instability is due to a resonance of the Doppler-
shifted frequency of the wave with thevelectron gyrofreQuenc&,
In straight geometry, we have necessarily a "slip", i.e., the
drift velocity of the electron beaﬁ varies from point to point.
Therefore, a resonance may occur only in a very thin layer of
the beam, all the rest is not quite in resonance. In bur analysis;
however, we considered a plasma which was rotating like a rigid
column. If our wave of the form expli(wt + wp + kz)] is in
resonance at.one layer, it is in resonance with the whole column.
It is quite natural that we expect a stronger instability. It
can be seen easily from (4.17a) and (4.19a) that the real frequency
of the wave is just the gyration frequency of the electrons plus the
rotation frequency of the plasma,

How well our assumption of a rigidly rotating plasma can
be realized in an experiment remains to be seen. It may be that
experimentally we always have a gently decreasing density distrib-
ution such that not the plasma aska whole, but only a thin layer,
can resonate. TUnder these circumstances, we expect slow growth
rates comparable to those found by Buneman.
| This instability might flatten the'density profile which

then gives rise to a more violent instability in the flattened
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area. . This in turn broadens ﬁhe density plateau further. . Thus,
the effective decay time still might be quite shdrt.

A stabilizing effect might be introduced by taking into
‘account conducting walls. The radius R of Fig. (1b) would then |
be finite, whereas in our analysis we had assumed R = o,

Mlso, finite temperature should be taken into account by
introducing a pressure term in Eq. (2.2) and‘adding an equation
of state. This increases the degrees of freedom of our system;
and the effect is expected to be de»stabilizing rather than

stabilizing.
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Figure la

Figure 1b

FIGURE CAPTIONS

Carthegian slab geometry as considered by Bunemen,

Levy, and Linson,

Cylindrical geometry, which simulates.the toroidal
HIPAG - geometry. The cylindrical geometry has been

considered in this work.
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